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* Abstract

The Fisher distribution is the snalogue on the sphere of

the isctropic bivariate normal distribution in the plane. The
4
purpose of this paper is to propose and analyze a spherical
. analogue of the general bivariate norrmal distribution. Estinm-

ation, hypethesis testing and confidence regions are also

discussed,
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Irntroduction.

The Fishcr distribution on the sphere is the analogue of

the isotropic bivariate normal, that is the Fisher distribution

has circular contours of constant probability. However, in sore

problems it is desirable to have a more general distribution on

L.

l

E the sphere vith oval contours in order to provide an analogue of
|

E‘\i the general bivariate normal distribution. The purpose of this

Ek paper is to construct a suitable spherical analogue of the general

bivariate normal distribution (denoted as the PBS distribution (
below). i

After setting up our notation in Section 2, we define the |
8-parameter Fisher-Bingham distribution (FBB) in Section 3. The

P85 distribution will appear as a S-parameter sub-family of FBg.

RIS . P AR

The limiting normal behaviour of FB; for large concentration and

TP

other motivating properties of FBS are discussed in Sections &4 and
’ : 6.

Sufficient statistics for the FB, distribution are described
ir Section 5, estimation of the parameters in Section 8, and a
confidence regior for the mean direction in Section 10. Several

hypothesis tests of interest are discussed in Section 9.

An example to illustrate the use of the use of the FBg
distribution is given in Section 11. Analogues of the Fisher-
Binghan distribution in other dimensions are briefly mentioned in
Section 12.

Although the primary emphasis in this paper is on the r35

distridbution, properties which applying to other sudb-families of

n, will also be msentioned vhere relevant.




———

2
2. DNotation
Let ”3 = (fcka : 5'3 = xf + x: -+ xg = 1) denote the unit

sphere in R3. We car vwrite x in polar coovrdinates (6,¢)

defined by

X, = cos €, x, ® sin? cos¢ , x, = sin€ sin¢ (2.1)

1
where Ogégn, Os¢ <21, 1f d:.x denotes Lebesgue measure on
03. then in polar coordinates d:.t = gin 6d6 d¢. Throughout this
paper ve shail define distributions on ;'23 in terms of densities
with respect to dx. .

A useful way to plot spherical data is given by Lasbert's

equal area proijection (see e.y. Mardia, 1972, p.215) defined by

z, = pcosy , 2z, = osing (2.2)
where p = 2s8in (6/2) , O<p<2,
For any matrix A(n»p), 1let A' denote the transpose of

A, a(j)(nxl) the jth celumn of A, j=1,...,p, and

ai(pul) the ith row of A (written as a column vector),

i=1l,...,n.
An orthogonal matrix I(3x3) of positive determinant depends

on 3 polar coordinates. Let us denote by T = T{(¢,n,E) the

matrix defined by

I = [g(yys €088 gy * 8inEg(q)s ~8ing gyy ¢ €OSE §(qyJ

2.3
vhere
cosy ~siny o
(_: = | siny cosn cosy cosn -sin (2.4)
siny sinn cosy sinn cos

and Ogysx, Ogn,E<2v ,

We next define a concept we shall need later in the paper.

Civen a non-gzero vector u(3xl) and s symmetric matrix A, let

—‘*4
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E=E(u,A) be a (3»3) orthogoial matrix such that if v = E'u

- o o - - =

and B = E'AE, then

vz-v

v1>o . bnab” . (2.6)

30, 8,50, (2.5)

Call the columns of E the constrained eigenvectors of (u,A).

Note that e,y is proportional to ? vhereas ¢2) and €(3)
diagonalize A "as much as possible” subject to being constrained
by f(l)' Also note that f(l) definer a vector (vhose sign

and e

is ceterzined dby (2.6)), vherecas (3 only define axes

@
(whose order is deterzined by (2.6)). The constrained eigenvectors
can als> be vieved as the eigenvectors after projecting A ento
the subspace orthcgonal to u (see Kato, 1966, pp 61-62).

It is alsc convenient to surmarize (u,A) in terms of the

size and shape quantities,

r,*=v. = jluf and 7, ®=b, b 2.7)

1" 2 "227033°
respectively, which are invariant under orthogonal changes of the
coordinate system.

For computational purposes, the matrix E is most easily
obtained by the following two-step procedure. First choose an
orthogonal matrix E to rotate u to the north pole
(1,0,0)'. (In the polar coordinates of (2.1) with
l.l for 1‘, choose ¥ and n so that E(l). % here § is
ardbitrary, so for simplicity ve can take { = 0.) Then set
.v- B'u, and C = H'AH, Secondly, choose a rotation 5 about

the north pole to diagonalize CL. vhere

_[e22 e
a [;32 ‘;i

fs the lower (222) submatriz of C. (In the polar coordinates of




(2.1) with K for T, take y * O, u = 0 and cheose { to

satisfy

‘.-.- -
tan 2% 2c23/(c22 c33).

ensurinz that (2.6) also holds.) Then E = HK,

Note that even after the first stage the size and shape

C
b ‘d '
[‘ < . have simple interpretations in terms of w and C. Letting
- ‘I [ - -
lxand lzdcnote the eigenvalues of CL we have
- g - 2.
TV T 40E 8
3. Toe Fisher-Binghas distributicn.
Define 2 distribution on £3 by the dersity
3 2
f(x)cexziervixe VOB (4 LX), x'x=1, (3.1)
. - ez 3 Gl . .

We shall call (3.1) the Fisher-Binghar distribution since the

first factor is proportional to a Fisher density and the second
to » Binghaw density. The 8 parameters of (3.1) are «30, real-

valued 62;53, a unit vector v, and ar orthogonal matrix

Telvay ) Y d

Ve shall also use the name FBg for the f:ll family (3.1). !
Note that the constraint ngi - Zf(v(i)x)z = 1 implies that a

tern 51‘!{1)§f in the exponent of (3.1) would be redundant in
the specification of the density.

The family of FBg distributions is closed under orthogonal
transformations. 1f x is a rendom vector frow FBy(«, 82.83.3.§) ‘
and E is ortho;onal..thcn g'f comes from rn,(x,sz.ea.n'v.u'r).

-« & & o

Note that the transformation Xxi» H'x can be thought of as

changing the frame of reference, with the coordinate axes in the

nev frame given by the columns of H.

e 4
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Several interesting distributions appear as special cases
of FBg. Besides the uniform, Fisher and Binghawm distributions
themselves, we also have the following fanilies, all of which are
also closeé under orthogonal transformations.
(a) FBb (r.éz.tyf). Put Ve, o that the Fisher axis
lines up with one of the Bingham axes. Thern the number of
parameters is reduced by 2 to 6 parameters.

(®) rns (¢,E,7). Put v = Y1) and set £ = -33 = £ say, with

2
£20. This distribution is a S5-parameter sub-fazily of FBb and

is proposed here as a spherical analogue of the bivariate normal
distridbution. The justification feor this proposal will be given

in Section 6,

(¢) PB‘ («, 8, !(1)). Put v e 7(1) and set Ez - 53 = g, say.
but with very different behavicur

Again, FB‘ is a sub-family of f36
from FBS. Noté that since we cannot distinguish between Y(2) and
Y(3) Liere, FB, is only a 4-paradeter fazily. 1f §g-ic , then
the myde of the rn‘ density is a small circle whose center lies
along the Ta1) axis. This distribution was introduced and studied
by Binghan and Mardia (1978).

All of the above families of distributions are closed under

arbitrary rotations of the coordinate system. The inclusion

relationships between them are summarized in Figure 1.

FB
risher‘f——" A‘~.~"‘FB6
/ —— F’S/ \

unifof=\\ ‘—‘———__,——‘,——————FBQ
Bingham

Figure 1.
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The Fisher-Bingham distribution was first introduced in
Mardia (1975, p.352) on the sphere ﬂp,paz. It also forms one
of a hierarchy of distributions considered in Beran (1979).

From Beran's point of view, the Fisher distribution contains an

arbitrary linear function of x in the exponent of the density,

and FBS contains an arbitrary linear and quadratic function of

x. The other distributions in the hierarchy include higher order

polynomials in the exponent of the density. An extension of FBa to a 1
Stiefel manifold was proposed in Mardia and Khatri (1977).

As noted in Mardia anc Khatri (1975), the FBB distribution
can be obtained by conditioning a trivariate normal distribution

with arbitrary mean vector aﬁd covariance matrix (a2 9-parameter
fazily) to lie on the unit sphere.

Unfortunately, statistical work with the full FBB distribution
has been hampered by difficulties in estimating and interpreting 1
the parazeters (but see de Wsal, 1979). BHowever, as we show in

tnis paper, thesedifficulties do not apply to the FB_ distributjon.

5

Ffor Fbs the parameters have important and natural interpretations,

and estimation is quite feasible.

4. Limiting behaviour of FB_ for large concentration.

6
When the ,'6 distribution is highly concentrated about s point,

it is well-approximated by a bivariate normal distribution. This
result generalizes the well-known property of the Fisher distribution
(see e.g. Mardia, 1972, p.246), vhere an isotropic bivariate normal
appears. Details about the closeness of this spproximation in the

Fisher case can be found in Kent (1978).

For convenience suppose that the orientation matrix I equals

1
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I, the identify matrix. Then in the polar coordinates (2.1),

the rs6 density in (3.1) takes the form

gl&,¢) = expix cos 645, sin% coszo + B sin’ sinzo} . (4.1)

3
Theorex 4.1, Let x-FBb (<, 31.32. 1) and let the paraneters
X, 6 £2 vary in such a way that

ll
K, lex - ‘z' 83/x - d3 wvith --<d3sd2<; . (4.2)
Then as «x+e

[eeos |y o] o o [0 [z ]‘,

K l_e o &« N R -1 '
in ¢

j

2
: x| Lo | o a-2p71|

(4.3)
where = denotec asymptotically equal in distribution and &

denotes convergence in distribution.

Proof. Using the Taylor series expansions

cose-l-ezlz 4ee0 . ginp = @4 oo (4.4)

for © small and using (4.2) we see that (4.1) is spproximately
proportional to

2 2

exp(-]:[bz -2d.0 coszo-2¢3e sinzoj} . (4.5)

2
vhich is the form of the limiting density in (4.3). To make this
srgument rigorous, it is merely necessary to show that
(a) the approximation (4.5) is adequate for |O|<<" and

(b) the probability mass associated with |0|>-:.i is negligible.
The details are straightforwvard.

Similarly, it is straightforvard to show that the two
expressions on the left-hand side of (4.3) are asymptotically equal

in distribution. D
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Corollary 4.1. Let x ~FBS(¢.5,I). 1f « and B wvary in

such a way that
Koo f/c+d with Os<d-§ ,
then

2 o (1+2)7}

X3

6 cos ¢ x
xé [. | = x; 2 2 N
'e sin Ql

-~ > e ———

o =207 o ]
e |
1°] J

5. Sufficient statistics

The PBB distribution forms a canonical exponential family in
its 8 parameters. If we write a*«xv and T =T diag(0.52.53)7'

- - -

then

f(x) = expia’x + x'5x} (5.1)

and a possible choice for the natural parameter vector is

(310920030 M0 T30 220 T30 33" - .2)

Given an (nx3) data matrix X from the FBB distribution,

the corresponding sufficient statistic is
n
! 2 2,
t s izl("n"‘iz"‘is' 2x0%520 Ba¥ise o Bio%iar %)
(5.3)
Mote that t holds the information contained in the sample mean vector

and the sample dispersion matrix about O,

1
n

-l '
P sedinm 5.0

Unfortunately, the other families described above (FBa,rBs and rsb)
are not canonical exponential families, but instead from curved
exponential families. In each case the parameter space has fewer
than 8 dimensions, but the minim) sufficient statistic is still

given by (5.3).
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These remarks about FB&'FBS and F36 apply only when all

the parameters are unknown., A neater situation arices if we
suppose that the wean direction v (and also possibly the
concentration x) is known. With this knowledge FB,, FB; and
1‘36 (and also }‘58) now become canonical exponential farilies.

For def{initeness we consider }‘Bs. After rotating the
coordinate system so that v - 1'(1) becomes equal to (1,0,0)' the

density is proportional to

2

f(m) = expiv x, + 61 (%4 ) + 2 62 x23} ’ (5.5)
or in polar coordéinates,

g(e,¢) e eapircos 6 +¢£ sinze cos 2@ =-x)) (5.6)
where

61 =£cos 27 , &, =£gin 2X , (5.7)

The parameter Xe[0,27) describes the direction of the major
axis -~ see Section 6. Then the natural parameter and sufficient

statistic are given by
1 B
(x45,4¢,)" and ;-.Z 1" 3, 2, ,%.4)" . (5.8)

I1f x is alsokrown, the natural parameter and sufficient

statistic become slightly simpler; namely

1
(61'62)' and ; I (xiz 3.2x12313) (5-9)

i=]

6. Properties of the F’S distribution.

density vas defined in Section 3 by

The !‘Bs

£(x) = exp{x 7(2)x + e{(v(z)x) (1(3)1)2"1.

As ve shall see belov the parameters can be descridbed as

follows: v320 is the concentration, 830 describe the ovalness,
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Y(l) is the mean direction or pole, T(2) is the major axis, and

1(3) is the minor axis. Note that y(,) and are determined

Y3
only up to sign, so that they do indeed define axes rather thar

directions.

of T, the density f(x) takes a particularly simple form. For

this reasen we shall call this transforzation, xf x* = T'x,

the transformation to the populatjon standard frame of reference. Ihe

density for x* takes the form

f(x*) = explunt + e<x52 - x§3>:~

or ir polar coordinates

. 2, o s
g(,¢) = expiccoss + fsin‘e coslgl .

A saxple analogue to the population standard frame will be
defined in Section 8.

As stated in the introduction, the FBS distribution is
propesed here as a spherical analogue of the bivariate normal
distribution. The following properties show why this is a sensible
proposal. We need to suppose here that 2:i<c to ensure the correct
behaviour.

(a) F85 and the bivariate normal are both 5-paramzeter families.

(b) The contours of constant prcbability near the pole !(1)
are approximately ellipses with majcr and mwinor axes Y(2)
and Y3)* respectively. (This property follows easily
from (4.4).)

(c) The geometric average of g(6,¢) over circles of constant

latitude is proportional to a Fisher density, that is,
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2n
Jlog §(6,¢)d¢ = «xcosé ¢ constant.
°

Thus, in this sense FB_ is a natural extension of the Fisher

5
distribution.
(d) As © goes from O to = for fixed 6, g(6,4) decreases

monotonicallv. Thus g(€,¢) is unimodal on all great circles

through the pole.

(e) For large values of the corcentration parameter «, PBS is
approximately the same as a bivariate normal distribution
with mean Y(1) and major and minor axes Y(2) and Y(3)
respectively. (See Coroliary 4.1.)

Note that the larger FB, fanily is mot a suitsble spherical
analogue of the general bivariate normal distribution because it
has one too mzry parameters. In Theorem 4.] we saw thar this
"extrd'parameter is "asymptotically unidentifiable" for large
concentration,

Hence we have introduced a further constraint (82'-83) to

define the FB, family. To some extent this constraint is arbitrary

5
(in fact a different constraint was proposed in Kent, 1980). BRowever,
the constraint used here does have some theoretically attractive
properties ((c) and (d) above). Moreover, as we shall see in the
next section, with this definition of FBS the normalization constant

takes a reasonably tractable form.

7. Moments of FBS.

So far we have not dealt with the normalization constant of

the FB, distribution,

5

2n
c(x,6) = J' J exp{x cosé + Blinze cos2¢)sin® d¢ de. (7.1)
o ‘o
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Using the results
n/2
{ (sin?).(cosf:)b de = }B(E%l . E%l). (7.2)
)

(Abramowitz and Stegun, 1972, (6.2.1), p.258) where B(-,°) 1is

the beta function, and

m -
e.:cosa sinzvadﬁ s ,,5:(\,44)“-:) v Iv(") (7.3)

‘0

(Abramowitz and Stegun, 1972, (9.6.18), p.376) where Iv(g) is
tne nodified Bessel function, we can expand c(x,£) in a series
-«

r 1 - -
clc,8) = 20§ ZLkd) o2k 4 =2k=d,

¢ T(k+l)
k=0

ki ) . (7.4)
Since sequences of Bessel functions can be quickly and easily
cczputed by the method of Amos (1974), formula (7.4) provides a
quick and simple method of calculating c(x,2). Note that
c(o0,0) = 47, the surfa;e area of the sphere, and
c(x,0) = 4ﬁ<-1 sinhx

the normalizing constant for the Fisher distribution.

For large « (with 26/k<l fixed) we have from Corollary

4.1 the asymptotic formula
c(x,8) & 2ne“[(x~26) (xs28)1 /2 . (7.5)

Consider a random vector x-—FBS(z,B.I). Differentiating
(7.1) under the integral sign and writing c = c(x,8), c. = sc(x,B)/ ox,
etc., we find

2-
Ex, = c‘/c . Exl c‘ch

1
(7.6)
E(xg-xg) - calc .

2,2 2
and hence gince :IOxzoxs -],
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L‘xg- (e—c  * °£)/2° .7
Exi- (c-c‘x - cf)/2c.

For later use write
k= Ex, and oJ?- Esz . §i=1,2,3. (7.8)

By symzetry, mwost of the other moments of interest equal O,
E(xz) - E(xa) = 0, (7.9)
E(xzx3) = 0, (7.10)

E(xlxz) - E(xlxs) = 0, (7.11)

8. Mcoent Estimation for ?Bs.

Let XivooesX be a sazple frex PBs(r.E.T . The stancard
way to estimate the parameters of FBS is to us¢ maximum likelihecod
estimates «x,5,T. However, it does not seem possible to obtain

explicit expressions for the m.l.e.s, so iterative methods must

be used tc find then.

In this section we propose simpler estimates which we call

the poment estimates «,5,I' for the parameters of FBS. They have

the following properties.

(a) The moment estimates are consistent estimates of the
true parameters and hence provide suitable starting values
for maxipum likelihood iterationm.

(b) The orientation matrix f can be calculated explicitly.

(c) 1f either the eccentricity 25/« is small (the usual case
in practice) or if « is large, then the moment estimates
sre close to the m.l.e.8.

(d) 1f the data is highly concentrated, the concentration

parapeters ;.; can slso be calculated explicitly.

, _______A '
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| More specifically the moment estimates are defined as

follows. Let x and S be the sample wean vector and the

i -

saxzple dispersion matrix about O as in (5.4). Then, in the

12)). %

‘ terainclogy of Section 2, T is defined to be the matrix of
' constrained eigenvectors for (x,S). Further, letting
) ‘:; r, - lix]; and r, denotc the size and shape quantities for
;\ \ (;,S). the estimates «x,f of concentration parameters are
SN T
k-_‘ ; determined implicitly by the equations
3 _
E § ] r,~c/e=0, r,-cc/c=0. (6.1)
!
i . For large «, the use of (7.5) leads to the explicit scluticn ‘
£ - -1 -1 !
- xk = (2=2r.-r,) * ¢ (2-2r +r.)
. 172 1 2 (8.2)
% B = 41(2-2r -t )7 < (2-2r 01 )7 |

The orientation matrix T has been chosen so that for x*

the sample analogues of (7.9)-(7.10) (but not (7.11))will hold.

vyt

For this reason we shall term the transformation xb xt=T'yx

- - =

o

the transformation to the sample standard frame of reference.

The rationale behind the moment estimate 1:' is as follows.
The first column i(l) is the wean direction of the sample, which
is also the m.l.e. of the mean direction under a Fisher distribution.
If the eccentricity 28/x is mot too large (which is the most
important case in practice), then i(l) will also be close to the
mJ.e. of the wean direction for !-'Bs. Further, if the true mean direction
Y1) 'i(l) vere known, then (.7.3)-(7.&) would ensure that i(l)
and 5(3) would be the m.l.e.s of the major and minor axes, respectively.
Hence if 2B/x is not too large, the moment estimates should be

nearly as efficient as the maximum likelihood estimates.
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A similar situation arises for large « when FB, is close

S
to a bivariate normsl. Then the moment estimates and ©.l.e.s for
!‘B, vill both be close to the corresponding w».l.e.s for the

bivariate nommal.

9. Sowme hypothesis tests.

In this section we describe several large-sample hypothesis
tests of interest. All of these tests can be carried out using
the following general result,
Theore= 8.1. Consider n independent identically distributed
observations frop a model ll1 with parameters (z,}) of dinensions

p and q respectively, ané considcr a null hypothesis lio t)e 0,

Suppose that under llo. the model forms a canonical exponential
fazily for ¢ with minimal sufficient statistic u, and that under
H (vith - known) the model forcs s canonical exponential fazily

for ) with minimal sufficient statistic w. Define Rao's score

statistic by
¥ = v-EWI Var(vlw™ (v-Ewlo)) , (9.1)

vhere 21l moments are calculated under II° with = .t (; being the
m.l.e. of 7 under llo).
Then asymptotically as the sample size e
2
Vu - xq » (’02)

and further LA is asysptotically equivalent to the 1likelihood

ratio stetistic -21logl for l° vs .1' Ve reject L it U‘ is too large.

Proof. This result is a special case of & geveral resuvlt in Cox and

Hinkley (1974), p.324, equation after (5.6). See also Rao (1973), p.418.

Rote that the score stetistic W . is wsually simpler to
calculate than the likelihood ratio statistic becsuse only a
parsmetric model under I. seed be fitted. Some hypothesis tests
which fit ino this framevork will movw be described.
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(a) llo t Fisher vs H

% "5
A Fisher distridbution with concentration psraveter « and
mean direction v forms s canonical exponential family with

natural parameters ("1'"2‘“3) and sufficient statistic

us n-lfxi. The m.l.e.8 satisfy

L -1 - -
ven Ifihl ’ l,lz(-r)lx‘lz(:) - (9.3)

vhere ¢, © "n.lini || is the resultant length, also used in (8.1).
Kov let B be an orthogonal matrix vhich depends on the data only

through ;. and vhose first column is given by h(l) = v, Let

y. = R'x, , £=1,...,n. Then from (5.9),vith e = <« and

s SRS §
Yaq) * v assumed known, the model under H, forzs s canonicsl exponential

fa=ily with sufficient statistics
e LT (y? o2 -2
AR P P IR NLE-DE % AN (9.4)

Rov the assumption that the x. come from a Fisher distribution

r(;.Q) is equivalent to the assumption that the y; Some from

r(-‘:,(l.o.o)'). Further, for s random vector y-F(«x,(1,0,0)'), we
have by symmetry
t(yg-w;) =0, E(yyyp) =0

t(y:y,) - l(yzy:) 0

“’j’:"j’g) 0, l(,j,z”) =0, j=),2,9,
and we have by (7.2) ond (7.3),

03D = syhh « et yptamp .
Bence the test statistic (9.1) takes the form

/2)*n 0(0)

2 2 2
2 ——-:;E,—- (" . '2) - X3 . (9.9
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Using the notation of Sectjon 2, it is easy to check that

2
¥ Y u§ equals the squared shape guantity rg

particular it is clear that the statistic Hh does not depend

for (i,s). In

b on the arbitrariness in the choice of the second and third columns

of H.
'; In practice this test might be used in the following situation.
e ﬁ Given a set of spherical data, an experimenter might first look
&l\z . for directionality by testing noz uniform vs Blz Fisher (the
: : Ravleigh test). If this null hypothesis is rejected he might
r

assess the circular symmetry of the data about the pole by using
* the test descrided here.
For large concentration, this test reduces to a test of

sphericity for the bivariate normal distribution; see for exaz;le

i aiinmalE A

Mardia, Kent, and Bibby (1979) p. 134.
(b) Hoz Fisher vs Hl: Fls.

eyt AR Ly
.

{ As in (a), this is a goodness-of-fit test for the Fisher

[

distribution, but here vith a more general alternative in mind.

. The calculations are similar to those in (a) but somewvhat mcre

- involved. Details are given in Mardia and Holmes (1980).

The analogous test on the circle was given by Cox (1975); see

also Cox and Barndorff-Nielsem (1979), p.291.

i (e) Boz Bingharm vs ll: !I..
This test is included here because it fits the assumptions
} of Theores 9.1, but the application of this test is somevhat

different from (a) and (b). Suppose an experimenter has data to

which he would like to fit a Bingham distribution. The data are

suspected to be dut mot known to be sntipodally symmetric. There

P are two ways to proceed in this situstien.

]" E i (i) Pirst wse a Rayleigh test (dm ;’; - x:) to test uniform vs
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Fisher. 1f uniformity is accepted, then antipodal symuetry can b¢

presumed and a Bingham distribution can be fitted.

(ii) First fit a Bingham distribution, and then assess the goodness-

of-fit by using the test of this section. This latter approach seems
, more suitable when the data is known at the outset not to be

uniformly distributed.

L.

ur Under Ho' §, the sample dispersion matrix about 9, is
f’% sufficient for the parameters. 1If X comes from a Bingham
? i distribution, we have by symmetry
2 ~
{ j E(x;) =0, E(xixjxk) =0, ijok = 1,2,3
B : so that

E(X) =0, E(x,S) =0 .

*

' [

Further, since the m.l.e.s of the Bingham parameters are chosen

3 so that E(xx') = §, we have
: : -
L 1 var(x!s) = var(x) = %-S. Hence the score statistic takes
4 the form
nXsTE - a5 (9.6)
: * ~ Note that when the data is uniformly distributed, S ; %1. 8o

that (9.6) reduces to the Rayleigh test statistic.

] 10. A _confidence interval for the mean direction.

Let XyoeeesX be a sample from ﬂs(x,ﬁ,r). First, transform

to the population standard frame (see Section 6) y, ® !"li.itl.....n.

80 that the y; form a sample from F3,(x,8,1). Then by the central

limit theorem and (7.6)-(7.11) we see that the sample mean

; - n'l {Zi is asymptotically normally distributed with mean vector
1

(4,0,0)" and covariance matrix n din(o:.og.cg).




Y - -
fl e ——— e e m oL .

The sazple wmean direction for the Y5 (vhich is also the
moment estipate of the true mean direction of the ’i) is defined
by Yy * ¥/l ¥]l . Consider the two coordinstes (721.131)' of

7(1)' Then by a general result on transformations (see, e.g. Rao,

1973, p. 387), (721.731) is also asymptotically normally

iﬁ P

distributed,
- i
"™ o L r -
R 2 [ ° fo3 ©
i S I I || -
) v o na o °
z 2L A

vl

Hence, an asymptotic 100(1~a)Z prodbadility region adbout the
mean direction of 785(&.9,?) is given in population standard

cocrdinates by the ellipse~like region

N 2,2 ,2 -2 ,12 2
(Z(l)‘QJ 2 v0%00 B (vg /3, ¢ vy, /0y xz;o} . (10.1)

. tidi MnanlE ...
. .o

)

vhere xi;n denotes the upper o critical value of the x§

[RAPYR

distribution.

Inverting (10.1) provides a confidence region for the true

mean direction about the sample mean direction. MNMore specifically,
SUPPOSE X s..eX, COme from F)s(x,!.r) with true sean direction
- Vv ® Y4y let T be the moment estimate of T (see Section 7) and

.. transform to the saxmple standard frame, f.i ® ;" xi. §i=1,...,0,

» .. and let vt e I'v. Then an asymptotic confidence region for v*

is defined by the ellipse-like region on the sphere

2
2;0l

(v*tﬁ’ H vg>0. 2 uz(v;2/O: . v;zlo:)< X (10.2)

Of ecourse, in practice u.o: and og will mot be known, but must
be replaced by any consistent estimates. Onme possibility is to
estimate « aond $ and then use (7.6)=(7.7). Nowever, s simpler

- " technique {s to just use the sample moments
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-

N -1 2 =1y =2 -2 ~l¢ o
ven Zx‘i‘x, €= m fxiz end oy =n Ixig , (10.3)

respectively,

Note that in moving from (10.1) to (10.2) we have switched
from a frame of reference about the irue mean direction to a frame
about the sample mean direction. MNowever, since these two points
lie within O(n.l) of one another in probsbility, the complications
arising from this switch are negligible and (10.2) rezains
asymptotically valid.

Vhen using the equisl-area projection (2.2) (in the sadple
standard frane) and vhen using the estimates (10.3), & confidence
region asymptotically equivalent to (10.2) is given by

2.

3IL';) < xz

((22,33) K | ;2(z§/§§ 43 ch)' (10.4)

11, Exazple.

Creer, lrving and Nsirn (1959) measured directions of magnetism
at n®34 sites in the Great Whin Sill. Their data is sumaarized
in Table 1, column (b) of that paper, pp.311-312 (excluding sites
32 and 34). Their use of declination (D) and inclimation (1) is
related to our use of polar coordinates in (2.1) by € = 90°+1 ,
¢ = 360°-D. [Change program accordinly).

The summary statistics are given by

0.083 0.045 <=0.075  0.014
x= |-0.9%9] , g «F0.07% 0.921 -0.122 .

-0.131 0.014 =0.122 0.034

from which ve find 2 s 0.971 , T, = 0.0229.
The moment and maxisum 1ikelihood estimates of location are

dboth given to three decimal places by
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0.085 -0.979 0.185]
| -0.987 -0.108 =0.117 .

Py
¢t -y

. % 0.134 -0.172 =0.976

and the estimates of concentration by 1

o

; = 42.16 E s 9,27 (exact moment) 4
SN P 61.76 ; - 8.37 (asymptotic moment)
r 3§ - -
) x = 42,16 8 =9.,28 (maximum likelihood).

The data and 8 952 confidence region for the mean direction

1 based on (10.2) and (10.3) are given in Figure 2, plotted using

the equal-area projection of (2.2) in the sample standard frame. ’
* The hypothesis test of Section 9(b) and the correspondir; i
* likelihood ratio test yield the values %

Since the upper 52 critical value of x: is 5.99, both #
E ' statistics show moderate evidence of a departure from a Fisher
P
t distribution.

In this example an alternative approach was used by Creer et.al.

They managed to transforp the data to approximate circular symmetry

‘ and then to use statistical techniques applicable to the Fisher

distribution.

12, Analogues in other dimensions.

S ' Much of the theory in this paper extends, at least in principle,
to other dimensions. The analogue of the full Fisher “ingham

family on the unit sphere in R’. p>2, can be written in the
general form (2.1) with the summation frem 2 to 3 replaced by a
summation from 2 to p (as in Beran, 1979).

An analogue of "5 can be obtained by introducing the constraint
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On the circle, p=2, this analogue of FBS is no more general than
the von Mises distribution itself. For general p33, provided
ISj! <«/2, =2,...,p, properties analogous to those in Sections
4-6 are valid. When p>3, moment estimation still can be carried

out, although the normalization constant seems to become more

complicated as the dimension increases.
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Figure 2: Plot éf the Great Whin Sill data using an equal-area
projection in the sample standard frame, snd a 952 confidence

ellipse for the mean direction.
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